Sta 111 - Summer II 2017 Probability and Statistical Inference 10. Bootstrap intervals

Lu Wang
Duke University, Department of Statistical Science

July 18, 2017

Outline

1. Bootstrapping = sampling with replacement from the observed sample
2. Bootstrap percentile intervals: middle XX\% of the bootstrap distribution
3. Bootstrap testing for a single statistic requires shifting the data to ensure that the null hypothesis is true
4. Summary

Rotten horrors

is a movie aggregator, where the audience is also able to review and score the movies. We want to estimate the median audience score of horror movies on RottenTomatoes.com. We start with a random sample of 20 horror movies.

Data

title audience_score Patrick52
Demon Seed 43
Tormented 34
Under the Bed 12
Phantasm IV: Oblivion 41
Fright Night Part 2 42
House of 1000 Corpses 65
Creepshow 2 46
The Forsaken 44
All the Boys Love Mandy Lane 34
Jason Lives: Friday the 13th Part VI 57
Vampire's Kiss 48
The Witches of Eastwick 60
Yellowbrickroad 28
Dying Breed 27
Carrie 73
Whoever Slew Auntie Roo? 56
The Mangler 23
Primal 29
The Twilight Saga: New Moon 65

First look

The histogram below shows the distribution of the audience scores of these movies (ranging from 0 to 100). The median score in the sample is 43.5. Can we apply CLT based methods we have learned so far to construct a confidence interval for the median RottenTomatoes score of horror movies. Why or why not?

Bootstrapping

- An alternative approach to constructing confidence intervals is bootstrapping.
- This term comes from the phrase "pulling oneself up by one's bootstraps", which is a metaphor for accomplishing an impossible task without any outside help.
- In this case the impossible task is estimating a population parameter, and we'll accomplish it using data from only the given sample.

Bootstrapping

- Bootstrapping works as follows:
(1) take a bootstrap sample - a random sample taken with replacement from the original sample, of the same size as the original sample
(2) calculate the bootstrap statistic - a statistic such as mean, median, proportion, etc. computed on the bootstrap samples
(3) repeat steps (1) and (2) many times to create a bootstrap distribution
- a distribution of bootstrap statistics
- The XX\% bootstrap confidence interval can be estimated by the cutoff values for the middle XX\% of the bootstrap distribution

Bootstrap sample 1

(1) Take a bootstrap sample:

Vampire's Kiss	48
Phantasm IV: Oblivion	41
House of 1000 Corpses	65
Dying Breed	27
Whoever Slew Auntie Roo?	56
The Forsaken	44
The Twilight Saga: New Moon	65
The Twilight Saga: New Moon	65
Whoever Slew Auntie Roo?	56
The Twilight Saga: New Moon	65
The Mangler	23
Dying Breed	27
Creepshow 2	46
House of 1000 Corpses	65
Whoever Slew Auntie Roo?	56
Tormented	34
Jason Lives: Friday the 13th Part VI	57
Vampire's Kiss	48
Primal	29
The Witches of Eastwick	60

(2) Calculate the median of the bootstrap sample:

23, 27, 27, 29, 34, 41, 44, 46, 48, 48, 56, 56, 56, 57, 60, 65, 65, 65, 65, 65 median $=(48+56) / 2=52$
(3) Record this value

Bootstrap sample 2

(1) Take another bootstrap sample:

title audience_score	
Fright Night Part 2	42
Carrie	73
The Forsaken	44
The Mangler	23
Primal	29
Patrick	52
Jason Lives: Friday the 13th Part VI	57
The Mangler	23
Vampire's Kiss	48
All the Boys Love Mandy Lane	34
The Twilight Saga: New Moon	65
All the Boys Love Mandy Lane	34
Yellowbrickroad	28
Vampire's Kiss	48
Tormented	34
The Mangler	23
Phantasm IV: Oblivion	41
Patrick	52
House of 1000 Corpses	65
The Twilight Saga: New Moon	65

(2) Calculate the median of the bootstrap sample:

23, 23, 23, 28, 29, 34, 34, 34, 41, 42, 44, 48, 48, 52, 52, 57, 65, 65, 65, 73 median $=(42+44) / 2=43$
(3) Record this value

Many more bootstrap samples

... repeat

The dot plot below is the bootstrap distribution of medians constructed using 100 simulations. What does each dot on the dot plot represent?

(a) Score of a horror movie in the original sample
(b) Score of a horror movie in the population
(c) Median from one bootstrap sample from the original sample
(d) Median from one sample from the population

The dot plot below shows the distribution of 100 bootstrap medians. Estimate the 90\% bootstrap confidence interval for the median RT score of horror movies using the percentile method.

(a) $(29,58.5)$
(c) $(37.5,52)$
(b) $(34,57)$
(d) $(40,49.5)$

Bootstrap testing for a median

- This is very similar to bootstrapping, i.e. we randomly sample with replacement from our data, but this time we need to first shift the data to ensure that the null hypothesis is true.
- To get p-value, we need to know the sampling distribution of our test statistic when the null hypothesis is true.
- Normal distribution might not be a good approximation here. We instead perform a simulation under conditions in which we know the null hypothesis is true.
- So we use our data to represent the population, but first we shift it over to ensure that the null hypothesis is true.
- The p-value is then defined as the proportion of simulations that yield a sample statistic at least as favorable to the alternative hypothesis as the original observed sample statistic.

Back to movie scores

The median of the original sample is 43.5 . Do the data provide convincing evidence that the median audience score of horror movies is greater than 40 ? The dot plot below is the bootstrap distribution of medians constructed using 100 draws from the shifted data (the median is shifted to be 40).

$H_{0}:$ median $=40$
$H_{A}:$ median >40
p -value: proportion of simulations where the simulated bootstrap sample median is at least as extreme as the one observed (43.5). $\rightarrow 20$ / $100=0.20$

Summary of Bootstrap method

1. Bootstrapping $=$ sampling with replacement from the observed sample
2. Bootstrap percentile intervals: middle $X X \%$ of the bootstrap distribution
3. Bootstrap testing for a single statistic requires shifting the data to ensure that the null hypothesis is true
