Sta 111 - Summer II 2017 Probability and Statistical Inference 21. Introduction to multiple linear regression

Lu Wang

Duke University, Department of Statistical Science

August 3, 2017

Outline

1. In MLR everything is conditional on all other variables in the model

- 2. Categorical predictors with k levels need k-1 dummy variables
- 3. Inference for MLR: model as a whole + individual slopes
- 4. Avoid collinearity in MLR
- 5. R² vs adjusted R²
 1. Adjusted R² applies a penalty for additional variables

6. Homework 6

Simple linear regression: Bivariate - two variables: y and x

• Multiple linear regression: Multiple variables: y and x_1, x_2, \cdots

$$\hat{\boldsymbol{y}} = \beta_0 + \beta_1 \boldsymbol{x}_1 + \beta_2 \boldsymbol{x}_2 + \dots + \beta_p \boldsymbol{x}_p.$$

Data from the ACS

A random sample of 783 observations from the 2012 ACS.

- 1. income: Yearly income (wages and salaries) -> response variable
- 2. employment: Employment status, not in labor force, unemployed, or employed
- 3. hrs_work: Weekly hours worked
- 4. race: Race, White, Black, Asian, or other
- 5. age: Age
- 6. gender: gender, male or female
- 7. citizens: Whether respondent is a US citizen or not
- 8. time_to_work: Travel time to work
- 9. lang: Language spoken at home, English or other
- 10. married: Whether respondent is married or not
- 11. edu: Education level, hs or lower, college, or grad
- 12. disability: Whether respondent is disabled or not
- 13. birth_qrtr: Quarter in which respondent is born, jan thru mar, apr thru jun, jul thru sep, or oct thru dec

MLR interpretations

All estimates in a MLR for a given variable are conditional on all other variables being held constant in the model.

► Slope:

- Numerical *x*: All else held constant, for one unit increase in x_j, y is expected to be higher / lower on average by b_i units.
- Categorical *x*: All else held constant, the predicted difference in *y* for the given level of x_i and the baseline is b_j.
- Intercept: With all the numerical x's set at 0 and all the categorical x's set at their corresponding baseline levels, y is expected on average to be b₀.
 - The intercept often does not make sense in context. It only serves to adjust the height of the line.

- 1. Interpret the slope for hrs_work.
- 2. Interpret the slope for gender.
 - Which gender is the baseline level?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_grtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

Categorical predictors: slopes for (almost) each level

- ▶ It only takes k-1 columns to code a categorical variable with k levels as $0/1s \rightarrow dummy variables$.
- Each categorical variable, with k levels, added to the model results in k-1 parameters being estimated.

/ Citizen: yes Baselin	· · ·		Race: $(k = 4)$ Baseline: White							
		Respondent	race:black	race:asian	race:other					
Respondent	citizen:ves	1, White	0	0	0					
1. Citizen	1	- 2, Black	1	0	0					
,	1	3, Asian	0	1	0					
2, Not-citizen	0	4, Other	0	0	1					

Bace: (k-4)

All else held constant, how do incomes of those born January thru March compare to those born April thru June?

Pr(> t) 0.19 0.00
0.00
0.00
0.20
0.00
0.35
0.00
0.00
0.12
0.26
0.05
0.17
0.00
0.00
0.03
0.68
0.53
0.60

All else held constant, those born Jan thru Mar make, on average,

(a) \$2,043.42 (b) \$2,043.42 (c) \$4978.12 less (d) \$4978.12 mor less more than those born Apr thru Jun.

Inference for MLR

- Inference for the model as a whole: F-test, df₁ = p, df₂ = n − p − 1
 - Testing if the predictors *collectively* have an effect on the response variable

$$H_0: \ \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

- H_A : At least one of the $\beta_i \neq 0$
- p is the number of predictors (slopes) in the model
- Note the difference between regression inputs and predictors.
 - For example, we have 4 predictors for race and age (raceblack, raceasian, raceother, age), but just 2 inputs: race and age.
- When did we use F-test before?
- ▶ Inference for each slope: T-test, df = n p 1
 - HT:
 - $H_0: \beta_1 = 0$, when all other variables are included in the model
 - $H_{A}: \beta_{1} \neq 0$, when all other variables are included in the model
 - CI: $b_1 \pm T^{\star}_{df}SE_{b_1}$

Model output

	Coefficients:					
		Estimate	Std. Error	t value	Pr(> t)	
	(Intercept)	-15342.76	11716.57	-1.309	0.190760	
	hrs_work	1048.96	149.25	7.028	4.63e-12	***
	raceblack	-7998.99	6191.83	-1.292	0.196795	
	raceasian	29909.80	9154.92	3.267	0.001135	**
	raceother	-6756.32	7240.08	-0.933	0.351019	
		565.07				
	genderfemale	-17135.05	3705.35	-4.624	4.41e-06	***
		-12907.34				
	time_to_work	90.04	79.83	1.128	0.259716	
	langother	-10510.44	5447.45	-1.929	0.054047	
1	marriedyes	5409.24	3900.76	1.387	0.165932	
	educollege			3.902	0.000104	***
	edugrad				< 2e-16	
	disabilityyes					*
	birth_qrtrapr thru ju					
	birth_qrtrjul thru se					
	birth_qrtroct thru de	ec 2674.11	5038.45	0.531	0.595752	
	Residual standard err (60 observations de				eedom	
	Multiple R-squared: F-statistic: 21.77 or	0.3126,^^IAd	djusted R-so	quared:		
_						

Practice

True / False: The F test yielding a significant result means the model fits the data well.

- (a) True
- (b) False

True / False: The F test not yielding a significant result means individual variables included in the model are not good predictors of y.

- (a) True
- (b) False

Significance also depends on what else is in the model

Model 1:			Estimate	Std. Error	t value	Pr(> t)	
(Intercept)			-15342.76	11716.57	-1.309	0.190760	
hrs_work			1048.96	149.25	7.028	4.63e-12	
raceblack			-7998.99	6191.83	-1.292	0.196795	
raceasian			29909.80	9154.92	3.267	0.001135	
raceother			-6756.32	7240.08	-0.933	0.351019	
age			565.07	133.77	4.224	2.69e-05	
genderfemale					-4.624	4.41e-06	
5			-12907.34				
time_to_work					1.128	0.259716	
langother					-1.929	0.054047	
marriedyes				3900.76	1.387	0.165932	<
educollege				4098.99			
0			59658.52	5660.26	10.540	< 2e-16	
disabilityyes			-14142.79	6639.40	-2.130	0.033479	
birth_qrtrapr	thru	jun	-2043.42	4978.12	-0.410	0.681569	
birth_qrtrjul				4853.19			
birth_qrtroct	thru	dec	2674.11	5038.45	0.531	0.595752	

Model 2:	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-22498.2	8216.2	-2.738	0.00631	
hrs_work	1149.7	145.2	7.919	7.60e-15	
raceblack	-7677.5	6350.8	-1.209	0.22704	
raceasian	38600.2	8566.4	4.506	7.55e-06	
raceother					
age	533.1	131.2	4.064	5.27e-05	
genderfemale	-15178.9	3767.4	-4.029	6.11e-05	
marriedyes	-> 8731.0	3956.8	2.207	0.02762	<

Avoid collinearity in MLR

Two predictor variables are said to be collinear when they are correlated, and this *collinearity* (also called *multicollinearity*) complicates model estimation.

Remember: Predictors are also called explanatory or <u>independent</u> variables, so they should be independent of each other.

- We don't like adding predictors that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest model, i.e. *parsimonious* model.
- In addition, addition of collinear variables can result in unreliable estimates of the slope parameters.
- While it's impossible to avoid collinearity in observational data, experiments are usually designed to control for correlated predictors.

Use ANOVA to compute R^2 in MLR

 R^2 is the percent of variability in y that is explained by the model

$$R^{2} = \frac{\text{explained variability in } y}{\text{total variability in } y} = \frac{\sum_{i=1}^{n} (\hat{y} - \bar{y})^{2}}{\sum_{i=1}^{n} (y - \bar{y})^{2}} = \frac{SST - SSE}{SST}$$

- sum of squares of y: $SST = \sum_{i=1}^{n} (y_i \bar{y})^2$
- sum of squares of residuals: $SSE = \sum_{i=1}^{n} e_i^2$
- explained variability = SST SSE

When did we calculate sum of squares before?

Using *ANOVA* we can calculate the explained variability and total variability in *y*.

Use ANOVA to compute R^2 in MLR

Analysis of	Varia	ance Table					
Response: in							
			Mean Sq				
hrs_work	1	3.0633e+11	3.0633e+11	129.3025	<	2.2e-16	***
race							
age							
gender	1	4.8665e+10	4.8665e+10	20.5418	6	.767e-06	***
citizen	1	1.1135e+09	1.1135e+09	0.4700		0.49319	
time_to_work	1	3.5371e+09	3.5371e+09	1.4930		0.22213	
lang	1	1.2815e+10	1.2815e+10	5.4094		0.02029	*
married	1	1.2190e+10	1.2190e+10	5.1453		0.02359	*
edu							
disability							*
birth_qrtr	3	3.3060e+09	1.1020e+09	0.4652		0.70667	
Residuals	766	1.8147e+12	2.3691e+09				
Total	782	2.6399e+12					

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{1.8147e + 12}{2.6399e + 12} = 0.3126$$

Adjusted R^2

- \triangleright R^2 increases when any variable is added to the model .
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R² does not increase.

Adjusted R²

$$R_{adj}^2 = 1 - \left(\frac{SSE}{SST} \times \frac{n-1}{n-p-1} \right)$$

where n is the number of observations and p is the number of predictors (slopes) in the model.

- ▶ Because *p* is never negative, R_{adi}^2 will always be smaller than R^2 .
- *R*²_{adj} applies a penalty for the number of predictors included in the model.
- Therefore, we choose models with higher R_{adi}^2 over others.

Calculate adjusted R^2

Analysis of Variance Table

l	Response: ind	come					
		Df	Sum Sq	Mean Sq	F value	Pr(>F)	
	hrs_work	1	3.0633e+11	3.0633e+11	129.3025	< 2.2e-16	***
	race	3	7.1656e+10	2.3885e+10	10.0821	1.608e-06	***
	age	1	7.6008e+10	7.6008e+10	32.0836	2.090e-08	***
	gender	1	4.8665e+10	4.8665e+10	20.5418	6.767e-06	***
	citizen	1	1.1135e+09	1.1135e+09	0.4700	0.49319	
	time_to_work	1	3.5371e+09	3.5371e+09	1.4930	0.22213	
	lang	1	1.2815e+10	1.2815e+10	5.4094	0.02029	*
	married	1	1.2190e+10	1.2190e+10	5.1453	0.02359	*
	edu	2	2.7867e+11	1.3933e+11	58.8131	< 2.2e-16	***
	disability	1	1.0852e+10	1.0852e+10	4.5808	0.03265	*
	birth_qrtr	3	3.3060e+09	1.1020e+09	0.4652	0.70667	
	Residuals	766	1.8147e+12	2.3691e+09			
	Total	782	2.6399e+12				

$$\mathbf{R}_{adj}^{2} = 1 - \left(\frac{1.8147\mathbf{e} + 12}{2.6399\mathbf{e} + 12} \times \frac{783 - 1}{783 - 16 - 1}\right) \approx 1 - 0.7018 = 0.2982$$

Practice

True / False: For a model with at least one predictor, R_{adj}^2 will always be smaller than R^2 .

- (a) True
- (b) False

Practice

True / False: Adjusted R^2 tells us the percentage of variability in the response variable explained by the model.

- (a) True
- (b) False

Homework 6

Practice questions:

- Regression with multiple predictors: 8.1, 8.3
- Inference for MLR: 8.5
- Model selection: 8.7, 8.9, 8.11
- Model diagnostics: 8.13