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Regression so far ...

At this point we have covered:

▶ Simple linear regression: one predictor - y and x

▶ Multiple linear regression: multiple predictors - y and x1, x2, . . .
– Relationship between numerical response and multiple numerical

and/or categorical predictors

What we haven’t seen is what to do when the predictors are weird
(nonlinear, complicated dependence structure, etc.) or when the
response is weird (categorical, count data, etc.)
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Example - Birdkeeping and Lung Cancer

A 1972 - 1981 health survey in The Hague, Netherlands,
discovered an association between keeping pet birds and
increased risk of lung cancer. To investigate birdkeeping as a risk
factor, researchers conducted a case-control study of patients in
1985 at four hospitals in The Hague (population 450,000). They
identified 49 cases of lung cancer among the patients who were
registered with a general practice, who were age 65 or younger
and who had resided in the city since 1965. They also selected 98
controls from a population of residents having the same general
age structure.

From Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)
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Example - Birdkeeping and Lung Cancer - Data

LC FM SS BK AG YR CD
1 LungCancer Male Low Bird 37.00 19.00 12.00
2 LungCancer Male Low Bird 41.00 22.00 15.00
3 LungCancer Male High NoBird 43.00 19.00 15.00
...

...
...

...
...

...
...

...
147 NoCancer Female Low NoBird 65.00 7.00 2.00

LC Whether subject has lung cancer
FM Gender of subject
SS Socioeconomic status
BK Indicator for birdkeeping
AG Age of subject (years)
YR Years of smoking prior to diagnosis or examination
CD Average rate of smoking (cigarettes per day)

Note: NoCancer is the reference response 0, LungCancer is the non-reference
response 1.
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Birdkeeping and Lung Cancer - EDA
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Example - Birdkeeping and Lung Cancer

▶ How do we come up with a model that will let us explore this
relationship?

▶ Even if we set NoLungCancer to 0 and LungCancer to 1, this
isn’t something we can transform our way out of - cannot
apply linear regression directly.

▶ One way to think about the problem - we can treat
NoLungCancer and LungCancer as successes and failures
arising from a binomial distribution where the probability of a
success is given by a transformation of a linear model of the
predictors.
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Generalized linear models

It turns out that this is a very general way of addressing this type
of problem in regression, and the resulting models are called
generalized linear models (GLMs). Logistic regression is just one
example of this type of model.

All generalized linear models have the following three
characteristics:
1. A probability distribution describing the outcome variable
2. A linear model

– η = β0 + β1X1 + · · ·+ βkXk

3. A link function that relates the linear model to the parameter
of the outcome distribution

– g(p) = η or p = g−1(η)

7



Logistic Regression

▶ Logistic regression is a GLM used to model a binary categorical
outcome using numerical and categorical predictors.

▶ We assume the outcome variable follows a binomial distribution
and therefore want to model the probability p of success for a given
set of predictors.

▶ To finish specifying the Logistic model we just need to establish a
reasonable link function that connects (β0 + β1X1 + · · ·+ βkXk) to p.
There are a variety of options but the most commonly used is the
logit function.

Logit function

logit(p) = log
( p
1− p

)
, for 0 ≤ p ≤ 1
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Properties of the Logit

▶ The logit function takes a value between 0 and 1 and maps it
to a value between −∞ and +∞.

▶ The inverse logit function takes a value between −∞ and +∞
and maps it to a value between 0 and 1.

Inverse logit (logistic) function

g−1(x) = exp(x)
1 + exp(x) =

1

1 + exp(−x)

The logit formulation is very useful when it comes to interpreting
the model since logit can be interpreted as the log odds of a
success.
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Odds
Odds are another way of quantifying the probability of an event,
commonly used in gambling and logistic regression.

Odds
For some event E,

odds(E) = P(E)
P(Ec)

=
P(E)

1− P(E)

Similarly, if we are told the odds of E are x to y then

odds(E) = x
y =

x/(x+ y)
y/(x+ y)

which implies

P(E) = x/(x+ y), P(Ec) = y/(x+ y)
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The logistic regression model

The three GLM criteria give us:

yi ∼ Bernoulli(pi)
η = β0 + β1X1 + · · ·+ βkXk

logit(p) = η

From which we arrive at,

pi =
exp(β0 + β1x1,i + · · ·+ βkxk,i)

1 + exp(β0 + β1x1,i + · · ·+ βkxk,i)

In R we fit a GLM using glm and we must also specify the type of
GLM by the family argument.
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Example - Birdkeeping and Lung Cancer - Model

summary(glm(LC ~ FM + SS + BK + AG + YR + CD, data=bird, family=binomial))

## Call:
## glm(formula = LC ~ FM + SS + BK + AG + YR + CD, family = binomial,
## data = bird)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.93736 1.80425 -1.074 0.282924
## FMFemale 0.56127 0.53116 1.057 0.290653
## SSHigh 0.10545 0.46885 0.225 0.822050
## BKBird 1.36259 0.41128 3.313 0.000923 ***
## AG -0.03976 0.03548 -1.120 0.262503
## YR 0.07287 0.02649 2.751 0.005940 **
## CD 0.02602 0.02552 1.019 0.308055
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 187.14 on 146 degrees of freedom
## Residual deviance: 154.20 on 140 degrees of freedom
## AIC: 168.2
##
## Number of Fisher Scoring iterations: 5
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Example - Birdkeeping and Lung Cancer - Model

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9374 1.8043 -1.07 0.2829
FMFemale 0.5613 0.5312 1.06 0.2907

SSHigh 0.1054 0.4688 0.22 0.8221
BKBird 1.3626 0.4113 3.31 0.0009

AG -0.0398 0.0355 -1.12 0.2625
YR 0.0729 0.0265 2.75 0.0059
CD 0.0260 0.0255 1.02 0.3081

Model:

log
( p
1− p

)
=− 1.9374 + 0.5613FMFemale+ 0.1054SSHigh

+ 1.3626BKBird− 0.0398AG+ 0.0729YR+ 0.0260CD
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Slope Interpretation - Categorical Variable

Just like MLR we can plug in BK to arrive at two status for Bird and
NoBird respectively, while the other predictors are held constant.

Bird model: log
(

p1
1−p1

)
= . . .+ 1.3626× 1+ . . .

NoBird model: log
(

p0
1−p0

)
= . . .+ 1.3626× 0+ . . .

change in log odds → log
( p1
1− p1

)
− log

( p0
1− p0

)
= 1.3626

log odds ratio → log
( p1
1− p1

/ p0
1− p0

)
= 1.3626

odds ratio → p1
1− p1

/ p0
1− p0

= exp(1.3626) = 3.9063

BK slope: Keeping all other predictors constant, this is the log odds ratio
of getting lung cancer for bird keepers (given level) vs non-bird keepers
(reference level).
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Slope Interpretation - Numerical Variable

▶ When the other predictors are held constant, for a unit increase in
YR (additional year of smoking), how much will the log odds
change?

log
( p
1− p

)
= . . .+ 0.0729x+ . . .

log
( p′
1− p′

)
= . . .+ 0.0729(x+ 1) + . . .

log
( p′
1− p′

)
− log

( p
1− p

)
= 0.0729

log
( p′
1− p′

/ p
1− p

)
= 0.0729

p′
1− p′

/ p
1− p = exp(0.0729) = 1.0756

YR slope: Keeping all other predictors constant, this is the change in log
odds of getting lung cancer for an additional year of smoking (per unit
change in the predictor).
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Common mistake: odds ratio vs relative risk

▶ Keeping all other predictors constant then, the odds ratio of
getting lung cancer for bird keepers vs non-bird keepers is
exp(1.3626) = 3.91.

▶ The most common mistake made when interpreting logistic
regression is to treat an odds ratio as a ratio of probabilities.

▶ Bird keepers are not 3.91x more likely to develop lung cancer
than non-bird keepers.

This is the difference between relative risk and an odds ratio.

RR =
P(Cancer|Bird)

P(Cancer|NoBird) =
p1
p0

OR =
P(Cancer|Bird)/[1− P(Cancer|Bird)]

P(Cancer|NoBird)/[1− P(Cancer|NoBird)] =
p1/(1− p1)
p0/(1− p0)
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Testing for the slope of BKBird
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9374 1.8043 -1.07 0.2829
FMFemale 0.5613 0.5312 1.06 0.2907

SSHigh 0.1054 0.4688 0.22 0.8221
BKBird 1.3626 0.4113 3.31 0.0009

AG -0.0398 0.0355 -1.12 0.2625
YR 0.0729 0.0265 2.75 0.0059
CD 0.0260 0.0255 1.02 0.3081

The basic setup is exactly the same as what we’ve seen before except
that we use a Z test.
H0 : βj = 0 when other explanatory variables are included in the model.
HA : βj ̸= 0 when other explanatory variables are included in the model.

Z =
β̂j − βj
SE =

1.3620− 0

0.4113 = 3.31

p-value = P(|Z| > 3.31) = P(Z > 3.31) + P(Z < -3.31)
= 0.0009

Note: The only tricky bit, which is way beyond the scope of this course, is how
the standard error is calculated. 17



Confidence interval for BKBird slope

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9374 1.8043 -1.07 0.2829
FMFemale 0.5613 0.5312 1.06 0.2907

SSHigh 0.1054 0.4688 0.22 0.8221
BKBird 1.3626 0.4113 3.31 0.0009

AG -0.0398 0.0355 -1.12 0.2625
YR 0.0729 0.0265 2.75 0.0059
CD 0.0260 0.0255 1.02 0.3081

Recall that the interpretation for the BKBird slope is the log odds
ratio of getting lung cancer for bird keepers vs non-bird keepers.
Log odds ratio:

CI = PE± CV× SE = 1.3626± 1.96× 0.4113 = (0.5565, 2.1687)

Odds ratio:

exp(CI) = (exp(0.5565), exp(2.1687)) = (1.7446, 8.7469)
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