Sta 111 - Summer II 2017 Probability and Statistical Inference 3. Conditional probability

Lu Wang

Duke University, Department of Statistical Science

July 4, 2017

Outline

1. Marginal and joint probabilities

2. Defining conditional probability

- 1. Independence and conditional probabilities
- 2. General multiplication rule

3. Bayes' Theorem

Relapse

Researchers randomly assigned 72 chronic users of cocaine into three groups: desipramine (antidepressant), lithium (standard treatment for cocaine) and placebo. Results of the study are summarized below.

	relapse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

http://www.oswego.edu/~srp/stats/2_way_tbl_1.htm

What is the probability that a patient relapsed?

	relapse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48 <i>48</i>	24	72 <i>72</i>

P(relapsed) = $\frac{48}{72} \approx 0.67$

Joint probability

What is the probability that a patient received the antidepressant (desipramine) <u>and</u> relapsed?

	relapse	relapse	total
desipramine	10 <i>10</i>	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72 72

P(relapsed and desipramine) = $\frac{10}{72} \approx 0.14$

Conditional probability

Conditional probability

The conditional probability of the outcome of interest A given condition B is calculated as

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

		no		P(relapse desipramine)
	relapse	relapse	total	P(relapse and desipramine)
desipramine	10	14	24	= $P(desipramine)$
lithium	18	6	24	
placebo	20	4	24	$=\frac{10/72}{10}=\frac{10}{10}=0.42$
total	48	24	72	24/72 24 0.12

Independence and conditional probabilities

Generically, if P(A|B) = P(A) then the events A and B are said to be *independent*.

- ► Conceptually: Giving *B* doesn't tell us anything about *A*.
- ► Mathematically: We know that if events A and B are independent, P(A and B) = P(A) × P(B). Then,

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(A) \times P(B)}{P(B)} = P(A)$$

General multiplication rule

- If two events are independent, their joint probability is simply the product of their probabilities. If the events are not believed to be independent, the joint probability is calculated slightly differently.
- If A and B represent two outcomes or events, then

General multiplication rule

$$P(A \text{ and } B) = P(A|B) \times P(B)$$

Note that this formula is simply the conditional probability formula, rearranged.

It is useful to think of A as the outcome of interest and B as the condition.

Bayes' Theorem

Bayes' Theorem is especially useful in cases where you know P(A | B), along with some other information, and you are asked for P(B | A).

Bayes' Theorem

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Application activity Group Test result positive, 0.05 0.03 susceptible, 0.6 negative, 0.95 --- 0.57 positive, 0.99 0.099 infected, 0.1 negative, 0.01 0.001 positive, 0.35 0.105 recovered, 0.3 negative, 0.65 0.195 infected) P(infected) P(+)P(infected | +)P(+) 0.99×0.1 ≈ 0.423 $0.6 \times 0.05 + 0.1 \times 0.99 + 0.3 \times 0.35$