LO 1. Define the standardized (Z) score of a data point as the number of standard deviations it is away from the mean: $Z=\frac{x-\mu}{\sigma}$.

LO 2. Use the Z score

- if the distribution is normal: to determine the percentile score of a data point (using technology or normal probability tables)
- regardless of the shape of the distribution: to assess whether or not the particular observation is considered to be unusual (more than 2 standard deviations away from the mean)

LO 3. Depending on the shape of the distribution determine whether the median would have a negative, positive, or 0 Z score.
LO 4. Assess whether or not a distribution is nearly normal using the 68-95-99.7\% rule or graphical methods such as a normal probability plot.

* Reading: Section 3.1 and 3.2 of OpenIntro Statistics

* Video: Normal Distribution - Finding Probabilities - Dr.Çetinkaya-Rundel, YouTube, 6:04
* Video: Normal Distribution - Finding Cutoff Points - Dr. Çetinkaya-Rundel, YouTube, 4:25
* Additional resources:
- Video: Normal distribution and 68-95-99.7\% rule, YouTube, 3:18
- Video: Z scores - Part 1, YouTube, 3:03
- Video: Z scores - Part 2, YouTube, 4:01
* Test yourself: True/False: In a right skewed distribution the Z score of the median is positive.

LO 5. Determine if a random variable is binomial using the four conditions:

- The trials are independent.
- The number of trials, n, is fixed.
- Each trial outcome can be classified as a success or failure.
- The probability of a success, p, is the same for each trial.

LO 6. Calculate the number of possible scenarios for obtaining k successes in n trials using the choose function: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
LO 7. Calculate probability of a given number of successes in a given number of trials using the binomial distribution: $P(k=K)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{(n-k)}$.
LO 8. Calculate the expected number of successes in a given number of binomial trials $(\mu=n p)$ and its standard deviation $(\sigma=\sqrt{n p(1-p)})$.

LO 9. When number of trials is sufficiently large ($n p \geq 10$ and $n(1-p) \geq 10$), use normal approximation to calculate binomial probabilities, and explain why this approach works.

[^0]- Video: Binomial distribution, YouTube, 4:25
- Video: Mean and standard deviation of a binomial distribution, YouTube, 1:39
* Test yourself:

1. True/False: We can use the binomial distribution to determine the probability that in 10 rolls of a die the first 6 occurs on the 8th roll.
2. True / False: If a family has 3 kids, there are 8 possible combinations of gender order.
3. True/ False: When $n=100$ and $p=0.92$ we can use the normal approximation to the binomial to calculate the probability of 90 or more successes.

[^0]: * Reading: Section 3.4 of OpenIntro Statistics
 * Video: Binomial Distribution - Finding Probabilities - Dr.Çetinkaya-Rundel, YouTube, 8:46
 * Additional resources:

