Learning Objectives

LO 1. Define the multiple linear regression model as

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

where there are k predictors (explanatory variables).

- LO 2. Interpret the estimate for the intercept (b_0) as the expected value of y when all predictors are equal to 0, on average.
- LO 3. Interpret the estimate for a slope (say b_1) as "All else held constant, for each unit increase in x_1 , we would expect y to increase/decrease on average by b_1 ."
- LO 4. Define collinearity as a high correlation between two independent variables such that the two variables contribute redundant information to the model which is something we want to avoid in multiple linear regression.
- LO 5. Note that R^2 will increase with each explanatory variable added to the model, regardless of whether or not the added variables is a meaningful predictor of the response variable. Therefore we use adjusted R^2 , which applies a penalty for the number of predictors included in the model, to better assess the strength of a multiple linear regression model:

$$R^{2} = 1 - \frac{Var(e_{i})/(n-k-1)}{Var(y_{i})/(n-1)}$$

where $Var(e_i)$ measures the variability of residuals (SS_{Err}) , $Var(y_i)$ measures the total variability in observed y (SS_{Tot}), n is the number of cases and k is the number of predictors.

- Note that adjusted R^2 will only increase if the added variable has a meaningful contribution to the amount of explained variability in y, i.e. if the gains from adding the variable exceeds the penalty.
- * Reading: Section 8.1 of OpenIntro Statistics
- * Videos: To be posted
- * Test yourself:
 - 1. How is multiple linear regression different than simple linear regression?
 - 2. What does "all else held constant" mean in the interpretation of a slope coefficient in multiple linear regression?
 - 3. What is collinearity? Why do we want to avoid collinearity in multiple regression models?
 - 4. Explain the difference between R^2 and adjusted R^2 . Which one will be higher? Which one tells us the variability in y explained by the model? Which one is a better measure of the strength of a linear regression model? Why?
- LO 6. Define model selection as identifying the best model for predicting a given response variable.
- LO 7. Note that we usually prefer simpler (parsimonious) models over more complicated ones.
- LO 8. Define the full model as the model with all explanatory variables included as predictors.
- LO 9. Note that the p-values associated with each predictor are conditional on other variables being included in the model, so they can be used to assess if a given predictor is significant, given that all others are in the model.

- These p-values are calculated based on a t distribution with n k 1 degrees of freedom.
- The same degrees of freedom can be used to construct a confidence interval for the slope parameter of each predictor:

$$b_i \pm t_{n-k-1}^* SE_{b_i}$$

- LO 10. Stepwise model selection (backward or forward) can be done based on p-values (drop variables that are not significant) or based on adjusted R^2 (choose the model with higher adjusted R^2).
- LO 11. The general idea behind backward-selection is to start with the full model and eliminate one variable at a time until the ideal model is reached.
 - p-value method:
 - (i) Start with the full model.
 - (ii) Drop the variable with the highest p-value and refit the model.
 - (iiii) Repeat until all remaining variables are significant.
 - adjusted R^2 method:
 - (i) Start with the full model.
 - (ii) Refit all possible models omitting one variable at a time, and choose the model with the highest adjusted R^2 .
 - (iii) Repeat until maximum possible adjusted R^2 is reached.
- LO 12. The general idea behind forward-selection is to start with only one variable and adding one variable at a time until the ideal model is reached.
 - p-value method:
 - (i) Try all possible simple linear regression models predicting y using one explanatory variable at a time. Choose the model where the explanatory variable of choice has the lowest p-value.
 - (ii) Try all possible models adding one more explanatory variable at a time, and choose the model where the added explanatory variable has the lowest p-value.
 - (iii) Repeat until all added variables are significant.
 - adjusted R^2 method:
 - (i) Try all possible simple linear regression models predicting y using one explanatory variable at a time. Choose the model with the highest adjusted R^2 .
 - (ii) Try all possible models adding one more explanatory variable at a time, and choose the model with the highest adjusted R^2 .
 - (iii) Repeat until maximum possible adjusted R^2 is reached.
- LO 13. Adjusted R^2 method is more computationally intensive, but it is more reliable, since it doesn't depend on an arbitrary significant level.
 - * Reading: Section 8.2 of OpenIntro Statistics
 - * Videos: To be posted
 - * Test yourself:
 - 1. Define the term "parsimonious model".

LO 14. List the conditions for multiple linear regression as

- (1) linear relationship between each (numerical) explanatory variable and the response checked using scatterplots of y vs. each x, and residuals plots of *residuals* vs. each x
- (2) nearly normal residuals with mean 0 checked using a normal probability plot and histogram of residuals
- (3) constant variability of residuals checked using residuals plots of residuals vs. \hat{y} , and residuals vs. \hat{y} , and residuals vs. \hat{y} .
- (4) independence of residuals (and hence observations) checked using a scatterplot of *residuals* vs. order of data collection (will reveal non-independence if data have time series structure)

LO 15. Note that no model is perfect, but even imperfect models can be useful.

- * Reading: Section 8.3 of OpenIntro Statistics
- * Videos: To be posted
- * Test yourself:
 - 1. If a residuals plot (residuals vs. x or residuals vs. \hat{y}) shows a fan shape, we worry about nonconstant variability of residuals. What would the shape of these residuals look like if absolute value of residuals are plotted against a predictor or \hat{y} .